THE CORMACKS LAKE COMPLEX, DASHWOODS SUBZONE: A WINDOW INTO THE DEEPER LEVELS OF THE NOTRE DAME ARC

S.J. Pehrsson, C.R. van Staal, R. Herd and V. McNicoll
Continental Geoscience Division, Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, K1A 0E8

ABSTRACT

The Cormacks Lake complex, long thought to be a distinct Precambrian retrograde granulite complex within the Dashwoods Subzone, comprises Tremadocian metaplutonic rocks of the Notre Dame Arc that intruded a broadly coeval arc volcano-sedimentary sequence, represented by mafic, siliciclastic and cordierite–gedrite paragneisses. Early polyphase deformation and burial of the arc and related sedimentary rocks predated, or was contemporaneous with, intrusion of the syn-tectonic mid-Ordovician Southwest Brook complex tonalites. Thickening and high-pressure metamorphism likely occurred in response to hard collision between the Dashwoods microcontinent and the Laurentian margin.

The restricted occurrence of high-pressure, uppermost amphibolite- to granulite-facies rocks in the typically high-temperature but more moderate pressure Dashwoods Subzone is most simply explained by exposure of the Cormacks Lake complex in a structural window, in part, formed by interference between two phases of deformation. Associated retrograde, lower pressure events may have commenced during the waning stages of arc-magmatism, but continued into the late Early Silurian (ca. 430 Ma). The latest event involved rapid exhumation that preserved both high- and low-temperature decompression reactions. The exhumation was concurrent with bimodal Silurian magmatism and local basin formation, potentially linked to slab break-off and uplift of the Dashwoods Subzone relative to the adjacent Annieopsquotch Accretionary Tract.

INTRODUCTION AND BACKGROUND

The Notre Dame and Dashwoods subzones (Figure 1) of the Newfoundland Appalachians (part of the Dunnage Zone situated west of Red Indian Line; Williams, 1995), preserve a record of Late Cambrian–Early Ordovician obduction of the Baie Verte Oceanic Tract (BVOT) onto the Peri-Laurentian Dashwoods microcontinent (Waldron and van Staal, 2001) and the subsequent injection by syntectonic Early Ordovician to Early Silurian plutons of the Notre Dame Arc (van Staal et al., 1996, 1998; Whalen et al., 1997a). The Dashwoods Subzone, situated in southern Newfoundland (Figure 1), generally represents a deeper, more intensely metamorphosed and deformed structural level, than the dominantly low-grade rocks of the Notre Dame Subzone, which occurs in north-central Newfoundland. The Dashwoods Subzone comprises ophiolitic remnants, mélangé (Fox and van Berkel, 1988; Hall and van Staal, 1999) and a variety of mafic through felsic paragneisses, all intruded by a large volume of mainly tonalitic to granodioritic metaplutonic rocks (informally referred to as the ‘sea of tonalite’ in Newfoundland).

The highest grade rocks occur in the Cormacks Lake complex (CLC), an upper amphibolite to granulite-facies gneiss complex (Owen and Greenough, 2000) that was thought to be Precambrian (Riley, 1957, 1962; Herd, 1978; Kean, 1983; van Berkel, 1987). Quartzofeldspathic gneisses that volumetrically dominate the complex have been interpreted as both metaplutonic rocks (Herd, 1978; Herd and Dunning, 1979; van Berkel et al., 1986) and siliciclastic paragneisses of a deformed basement-cover sequence (van Berkel and Currie, 1988). Northwesterly trending foliations present in part of the CLC deviated markedly from the characteristic northeasterly structural grain of the Dunnage Zone in central Newfoundland, and hence were interpreted together with the high-grade metamorphism, as pre-Appalachian, Precambrian features. However, a distinctive, high-K charnockite (Whalen et al., 1997a) that intrudes the gneisses yielded an age of 460 ± 10 Ma, establishing a Middle Ordovician age for peak metamorphism and deformation (Currie et al., 1991). Coeval ca. 455 Ma K–Ar hornblende and biotite ages from rocks adjacent to the CLC (Stevens et al., 1982), were suggested to reflect rapid Ordovician cooling (Currie et al., 1991). Regional deformation and metamorphism was thought to have ended by the Silurian because late gabbros of the, ca. 431 Ma Main Gut suite (Dunning et al., 1990), are generally unmetamorphosed and undeformed (Currie and van Berkel, 1992) and the rocks are unconformably overlain by unmetamorphosed Silurian redbeds (Chandler and Dunning, 1983).
Thematic mapping of the CLC and adjacent rocks was undertaken in the summers of 2001-2002 with the aim of establishing its tectonothermal history and relationship to the adjacent Humber Zone and Annieopsquotch Accretionary Tract (AAT, Lissenberg and van Staal, 2002). This context is critical to evaluating the tectonic evolution of the Notre Dame Arc and Dunnage Zone, as the deeper structural level represented by the Dashwoods Subzone provides a window on some processes only incompletely recorded in the upper levels. In this contribution a preliminary description of the geology, structure and metamorphism of the CLC and its environs is presented. These data are compared and integrated with those from other parts of the Dashwoods Subzone (e.g., southern Long Range, Hall and van Staal, 1999) and a testable hypothesis is presented of the tectonic evolution of the entire subzone as a whole.

GENERAL GEOLOGY

THE CORMACKS LAKE COMPLEX (CLC)

The CLC comprises amphibolite- to granulite-facies gneisses and schists that occupy a large (Figure 2), mushroom-shaped culmination straddling the Puddle Pond (NTS map area 12A/5), Main Gut (NTS map area 12B/8) and Dashwoods Pond (NTS map area 12B/1) areas. The oldest units of the CLC are supracrustal rocks that were transformed into paragneiss and layered amphibolite. These rocks occur as narrow mappable units, and also as smaller scale inclusions, within younger metaplutonic rocks (Figure 2). The paragneiss includes rusty-weathered gedrite–cordierite or gedrite–biotite±hornblende quartzofeldspathic rocks, biotite+sillimanite±garnet bearing psammite and semipelite, and minor calc-silicate rock and marble. These rocks are interlayered on a decimetre- to tens of metre-scale (Plate 1a), and locally have preserved breccia horizons and internal compositional grading, suggesting that compositional layering, at least locally, represents transposed bedding. The micaceous paragneiss is commonly migmatic, dominantly nebulitic to stromatic, but locally also diatexitic. Volumetrically, the gedrite–biotite quartzofeldspathic gneisses represent the largest component of the paragneiss but the scale of interlayering of the other rock types makes more detailed subdivision impractical on 1: 50 000 scale.

The amphibolites are interlayered with the paragneiss, both at the metre-scale and as separate narrow units (Figure 2). They are locally characterized by a strong centimetre- to
Figure 2. Simplified geology of the Cormacks Lake complex and environs.
decimetre-scale lenticular, discontinuous layering reminiscent of highly elongated and smeared-out pillow basalts (Plate 1b). Associated calc-silicate lenses are suggestive of original interpillow or interflow carbonate. More massive, homogeneous mafic layers in the amphibolites may represent syn-volcanic gabbroic–diabasic intrusions.

Considering the overall make-up of the supracrustal sequence, the gedrite–cordierite paragneiss has been interpreted as the metamorphic product of hydrothermally altered intermediate to felsic volcanic rocks. A sample south of Cormacks Lake has a preliminary U–Pb crystallization age of ca. 489 Ma (V. McNicoll and S. Pehrsson, unpublished data, 2002), suggesting that the Cormacks Lake paragneiss and interlayered amphibolite are of Late Cambrian–Early Ordovician age.

The predominant map unit of the CLC is a buff weathering, hornblende–biotite–magnetite±garnet, ±clinopyroxene granodioritic orthogneiss. Preservation of intrusive contacts with the paragneiss (Plate 1c), feldspar phenocrysts and blue quartz eyes confirm a plutonic origin. The orthogneiss is well-foliated, locally migmatitic and contains abundant schlieren of paragneiss. An increase in the proportion of paragneiss inclusions toward its contacts with the supracrustal rocks and the presence locally of an intervening hybrid, strongly foliated unit consisting of equal proportions of paragneiss and orthogneiss, suggest that the paragneiss formed pendants within the granodioritic orthogneiss. A preliminary Tremadoc U–Pb crystallization age of ca. 483 Ma (V. McNicoll and S. Pehrsson, unpublished data, 2002) has been obtained from a quartz–phenocrystic sample on the east side of Cormacks Lake.

The granodioritic orthogneiss locally contains map- to outcrop-scale, coarse-grained, clinopyroxene–plagioclase– hornblende metagabbroic bodies. Locally cumulate-textured, the metagabbro was tentatively correlated by van Berkel (1987) with ophiolitic remnants occurring elsewhere in the Dashwoods Subzone. Pending geochemical analysis, these metagabbros could also represent subvolcanic intrusions related to the layered amphibolites in the paragneiss.

The aforementioned Middle Ordovician, Cormacks Lake charnockite, a pink- to buff-weathering, weakly foliated, alkaline felsic rock, underlies the prominent hills immediately north of Cormacks Lake. The charnockite is variably retrograded and ranges from a perthitic K-feldspar megacrystic, two-pyroxene syenogranite to a hornblende– garnet–clinopyroxene, K-feldspar megacrystic granite. It apparently forms a sill-like body exposed in the core of the complex. Based on its texture and mineralogy, it most likely represents a Middle Ordovician felsic pluton emplaced under high-grade conditions.

INTRUSIVE AND SURROUNDING COUNTRY ROCKS

The CLC is bounded to the southwest by the sinistral-oblique Lloyds River fault (Lissenberg and van Staal, 2002) that separates it from the Annieopsquotch Accretionary Tract (van Staal et al., 1998). To the east, west and north, the CLC is surrounded by migmatite and metatonalite to granodiorite plutons (Southwest Brook complex of Dunning et al., 1996) that characterize much of the remaining Dashwoods Subzone (Figure 2). The oldest units in this domain are ophiolitic remnants represented by small mafic-ultramafic complexes such as that immediately west of Blue Hill Pond (Figure 2; Currie and van Berkel, 1992; C. Lissenberg and C. van Staal, unpublished data, 2002), and migmatitic, metamorphosed mélange, such as is found in the southern Dashwoods Subzone associated with the ophiolitic Long Range complex (Hall and van Staal, 1999). The mélange is characterized by blocks of medium- to coarse-grained diorite, pyroxenite and cumulate-textured gabbro in a matrix of > 50 percent biotite–magnetite–quartz–plagioclase leucosome and chaotic schlieren of garnet–sillimanite–biotite–cordierite–K-feldspar–muscovite paragneiss, i.e., metamorphic assemblages similar to those occurring in the CLC (Plate 1d). Mafic inclusions in the mélange also contain hornblende together with garnet. Hence, there is presently no evidence that the CLC and surrounding rocks of the Dashwoods Subzone experienced significantly different metamorphic histories.

The migmatitic mélange, ophiolitic remnants and the CLC were intruded by a voluminous suite of syntectonic granitoid plutons of the ca. 463 to 456 Ma Southwest Brook complex (Dunning et al., 1996; V. McNicol and C. van Staal, unpublished data, 2002) of the Notre Dame Arc (Whalen et al., 1997a). This arc-granoid suite consists predominantly of white- to grey-weathering, plagioclase- and/or quartz-phyric biotite–magnete–hornblende tonalite to granodiorite. It is weakly to strongly foliated and recrystallized, and locally contains numerous, commonly partially brecciated amphibolite to hornblende diorite inclusions, that are thought to represent remnants of comingled intermediate composition magmas (J.B. Whalen, personal communication, 2002). Intrusive relationships between the CLC and the southwest Brook complex have been preserved along the northwestern margin (Plate 2a). The northeastern flank of the CLC, along Barachois Brook, is inferred to be a fault (Barachois Brook fault) on the basis of an apparent truncation of structures and units (Figure 2) and magnetic lineaments. This fault has been tentatively interpreted as a Silurian, northeast-dipping normal fault, consistent with preliminary age data that suggest the CLC experienced a younger cooling history than rocks north of the fault.

A variety of variably deformed and metamorphosed mafic dikes cut the CLC. They include an early, plagioclase-phyric set that experienced at least upper-amphibolite-facies conditions, and a likely younger set that is either unmetamorphosed or partially altered to green schist-facies conditions. The latter set of dykes also intrude the Southwest Brook complex. The upper-amphibolite-facies dykes show comingling textures (Plate 2b) with a pink, leucocratic, biotite±muscovite granite–granodiorite that forms kilometre-scale, sill-like intrusive bodies and abundant late aplite dykes within the CLC. It is tentatively correlated with a distinctive biotite±muscovite granite suite that intrudes the Southwest Brook tonalites and forms a large complex in the Midway Lake area, where it is intimately associated with Lower Silurian gabbros of the Main Gut suite (Dunning et al., 1990; V. McNicol and C. Lissenberg, unpublished data, 2002). A late leucogranite dyke in this area has yielded a preliminary Early Silurian age (ca. 430 Ma, V. McNicol and C. van Staal, unpublished data, 2002).

STRUCTURAL AND METAMORPHIC HISTORY

The main fabric in the CLC rocks is a transposition foliation that is folded by the large fold interference structure that dominates the map pattern (Figure 2). Intrafolial hinges of older foliations in the para- and orthogneiss, suggest that this transposition foliation is at least an F2 structure, and hence is referred to as S2. F2 folds themselves are at least locally accompanied by a new crenulation cleavage, indicating that S2 is a composite structure. Pre-S1 foliations and lineations are best preserved in F1 intraplate hinges. Here earlier fabric(s) are defined by aligned biotite, gedrite, and sillimanite, staurolite–biotite–quartz–plagioclase inclusion
trails in garnet porphyroblasts and migmatitic leucosome veins in the paragneiss, and folded gneissic layering in the orthogneiss. These pre-\(F_2\) structures are grouped in \(D_1\), although at present the possibility that \(D_1\) comprises more than one generation of structures cannot be ruled out. \(D_1\) was accompanied by at least amphibolite-facies conditions.

\(F_2\) folds are typically moderately plunging (30 to 60°), generally having steeply inclined axial surfaces and attenuated or dismembered limbs. Partial alignment of peak metamorphic minerals in \(S_2\) (Plate 3a), syn-\(D_2\) poikiloblasts and garnet–hornblende–plagioclase–quartz or clinopyroxene–hornblende–plagioclase–quartz assemblages in syn-\(D_2\) migmatitic leucosome suggest that \(M_2\) metamorphism took place at transitional upper amphibolite to granulite conditions.


The minimum age of \(D_2\) and peak \(M_2\) amphibolite–granulite conditions is constrained by a ca. 460 Ma hornblende tonalite–quartz diorite of the Southwest Brook complex that cuts a strong \(S_2\) in the CLC orthogneiss (Plate 2a; V. McNicoll and S. Pehrsson, unpublished data, 2002). The local presence of a weak \(S_3\) in the tonalite suggests that the latter intruded late kinematically, consistent with the weak character of \(S_2\) in the coeval Cormacks Lake (Plate 2b).
charnockite. Peak garnet–clinopyroxene assemblages are best preserved near Cross Pond (Figure 2). Lower Silurian metamorphosed mafic dykes (V. McNicoll and S. Pehrsson, unpublished data, 2002) that cut S$_2$ and are folded by F$_3$ (Plates 3b and 4b) in this area contain amphibolite-facies assemblages, suggesting that high temperatures were maintained in the CLC for a considerable time period following peak M$_2$ conditions.

A weakly to strongly developed S$_3$ foliation is axial planar to upright, close to tight F$_3$ folds of S$_2$ at all scales (Plate 3c). The F$_3$ fold axes vary in plunge from 20 to 80° and are generally (sub)parallel to a strong mineral or stretching lineation. Whether the mineral/stretching lineation formed during F$_3$, earlier or a combination of both is at present not well understood.

The northwest foliation trends discussed by previous authors and used as evidence for the presence of Precambrian basement are an artifact of a regional-scale F$_3$ to F$_4$ mushroom-like, fold interference structure that defines the shape of the CLC (Figure 2). This mushroom was produced by refolding of a tight, doubly plunging regional-scale F$_3$ antiform (major hinges centred on the Cross Pond and Blue Hill Pond areas) by an easterly trending F$_4$ fold.

D$_3$ deformation appears to have taken place under waning pressure but elevated temperature conditions. This is indicated by several lines of evidence: 1) the recrystallization of M$_2$ mineral phases folded and crystalplastically deformed by F$_3$; 2) nucleation of garnet–quartz–plagioclase leucosomes parallel to S$_3$ and folded by F$_4$ (Plate 3d); and 3) reaction rims and corona structures on elongated M$_2$ aggregates such as orthopyroxene–cordierite rims on gedrite–gar-
CURRENT RESEARCH, REPORT 03-1

The latest phase of deformation, F₄, is represented by east- to east-southeast-trending, upright F₄ folds at all scales that fold S₂, S₃ and L₃. F₄ folds are commonly accompanied by a widely spaced, generally weakly developed crenulation cleavage (S₄). A distinctive phase of cordierite-bearing leucosome has nucleated (sub)parallel to S₁ in several places (Plates 5a and b), while intergrown cordierite and gedrite locally also shows a preferred dimensional orientation parallel to S₄. These small-scale structures suggest that F₄ was accompanied by relatively low pressure and moderate temperature metamorphic conditions. The small-scale F₄ folds, the predominant D₄ structures in outcrop, are congruent with the east–west-trending regional-scale structure that generally controls the mushroom geometry of the CLC (Figure 2), hence, the latter is also interpreted as a F₄ fold. The F₄ fold plunge varies with the dip of the S₂, especially where they cross F₃ axial surfaces, but is predominantly moderately to steeply east plunging (ca. 60°).

The region surrounding Cormacks Lake and south to the Lloyds River fault is characterized by more penetrative D₄ retrogression and only very local preservation of upper amphibolite–granulite-facies assemblages. Preliminary metamorphic zircon, monazite, and rutile U–Pb ages from a sample with D₄ cordierite–gedrite are all ca. 430 Ma, suggesting very rapid decompression and cooling during the early Silurian (V. McNicoll and S. Pehrsson, unpublished data, 2002).

DISCUSSION

Field observations and preliminary U–Pb dating have resolved a long-standing controversy surrounding the CLC, namely that it does not consist mostly of metasedimentary siliciclastic rocks, but instead is dominated by a Tremadoc granodioritic orthogneiss. The less voluminous paragneiss and layered amphibolite intruded by the orthogneiss, appear to be nearly coeval in age and both probably represent the remnants of a volcano-sedimentary sequence and associated subvolcanic plutons related to the earliest phase of the continental Notre Dame Arc in western Newfoundland. Similar age arc plutons occur also in the Southern Long Range (Dubé et al., 1997; Whalen et al., 1997a, 1998) and demonstrate that the Tremadoc was an important stage of arc magmatism in the western part of the Dunnage Zone.

The Tremadoc arc sequence was subsequently deeply buried and intensely deformed (F₁ and F₂) prior to, and during the, Middle Ordovician (ca. 463 to 457 Ma) tonalite flare-up represented by the plutons of the Southwest Brook complex, and related syn-tectonic plutons in the neighbour-

Plate 4. Structural and metamorphic relationships. a) Decompression reaction rims in metagabbro, Soldier Hill, north Cross Pond. Cores of clinopyroxene-garnet are isolated from matrix garnet-hornblende by plagioclase rims (white), consistent with decompression from high to moderate pressure while temperatures remained elevated. b) Dyke of the late leucogranite crosscuts S₁ in deformed Cormacks Lake gneisses but is itself folded by F₁ folds, south Cross Pond. Note the F₂/F₃ overprinting in adjacent gneiss.
ing Annieopsquotch Accretionary Tract that intrude during early shearing along the Lloyds River fault (Lissenberg and van Staal, 2002). The Cormacks Lake charnockite also intruded during this phase of arc magmatism, close in time to attainment of peak M, upper amphibolite–granulite-facies conditions in the CLC paragneisses. F3 and F4 related metamorphic assemblages and decompression textures from rocks in the CLC and surrounding areas west of the Lloyds River fault, combined with preliminary U–Pb ages of minerals having a variety of closure temperatures, all indicate that elevated metamorphic temperatures and at least moderate pressures of this part of the Dashwoods Subzone were maintained into the Early Silurian. This is in contrast to similar rocks in the southern part of the Dashwoods Subzone, which are unconformably overlain by a Late Ordovician–Silurian volcano-sedimentary sequence (Dubé et al., 1997). The CLC and surrounding parts of the Dashwoods subzone are most simply explained as a structural window into the deepest buried part of the Ordovician Notre Dame Arc, exhumed in the Lower Silurian.

Large inclusions of ophiolite and mélange of the BVOT in both the Tremadoc and Middle Ordovician Notre Dame Arc plutons (Hall and van Staal, 1999, this work) indicate that early Notre Dame Arc magmatism and the subsequent deep burial of the CLC took place after obduction of the BVOT onto the Dashwoods microcontinent (Waldron and van Staal, 2001). This poses an interesting problem concerning the tectonic setting of D2 shortening and M2 upper amphibolite–granulite-facies metamorphism, because intrusion of the Southwest Brook complex arc plutons into the CLC requires that the Dashwoods occupied an upper plate setting. One possible explanation is that burial of the CLC and surrounding Dashwoods microcontinent is due to thickening and structural burial (possibly aided by emplacement of sill-like plutons) resulting from an Arenig-Llanvirn (ca. 470 Ma), hard collision between the Dashwoods microcontinent and the Laurentian margin following closure of the intervening Humber seaway (Waldron and van Staal, 2001; see also Brem et al., this volume). Subsequent tonalites–granodiorites could then represent magmatism related to east-dipping slab-breakoff and/or initiation of west-directed subduction and convergence of the AAT with the Dashwoods (van Staal et al., 1998).

The post-D2, pre-F4 high-temperature decompression reactions of the CLC suggest that it experienced partial exhumation prior to the late Early Silurian (ca. 430 Ma) when rapid exhumation quenched lower temperature F4-related assemblages. This early decompression event is as yet not well understood, but may explain the moderate-pressure, high-temperature conditions discussed above. It is constrained to have occurred between ca. 457 Ma (the age of the Cormacks Lake charnockite) and 430 Ma, raising the possibility that elevated temperatures may be related to waning 450 to 435 Ma arc magmatism.

The rapid exhumation during the late Early Silurian is likely dynamically linked to ca. 430 Ma reactivation of the Lloyds River fault (V. McNicoll and C. Lissenberg, unpublished data, 2002) and is coeval with both bimodal magmatism of the Main Gut gabbro suite and red bed deposition in
restricted subaerial basins (Chandler and Dunning, 1983). Exhumation, magmatism and basin formation is related to an Early Silurian break-off of the west-dipping slab (Whalen et al., 1996, 1997b; van Staal et al., 1998). Forthcoming detailed quantitative geothermobarometry, U–Pb and Ar–Ar geochronology, and geochemical studies will test these hypotheses and their application to the Dashwoods Subzone as a whole.

ACKNOWLEDGMENTS

This work is supported by the Geological Survey of Canada, Red Indian Line Targeted Geoscience Initiative. We thank G. Smith for his excellent field assistance; A. Brem, J. Lissenberg, P. Valverde-Vaquero and J. Whalen for stimulating field discussions and J. Whalen for his critical review of the manuscript. This is Geological Survey of Canada contribution GSC# 2002221.

REFERENCES

Brem, A.G., Lin, S. and van Staal, C.R.
This volume: Structural relationships south of Grand Lake, Newfoundland.

Chandler, F.W. and Dunning, G.R.

Currie, K.L. and van Berkel, J.T.

Currie, K.L., van Breeman, O., Hunt, P.A. and van Berkel, J.T.

Dubé, B., Dunning, G.R., Lauziere, K. and Roddick, J.C.


Fox, D. and van Berkel, J.T.

Hall, L. and van Staal, C.R.

Herd, R.K.

Herd, R.K. and Dunning, G.R.

Kean, B.F.

Lissenberg, C.J. and van Staal, C.R.

Owen, J.V. and Greenough, J.D.

Riley, G.C.


